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ABSTRACT 

Follicle quantification refers to the computation of the number and size of follicles in 3D ultrasound volumes of the 

ovary. This is one of the key factors in determining hormonal dosage during female infertility treatments. In this paper, 

we propose an automated algorithm to detect and segment follicles in 3D ultrasound volumes of the ovary for 

quantification. In a first of its kind attempt, we employ noise-robust phase symmetry feature maps as likelihood function 

to perform mean-shift based follicle center detection. Max-flow algorithm is used for segmentation and gray weighted 

distance transform is employed for post-processing the results. We have obtained state-of-the-art results with a true 

positive detection rate of >90% on 26 3D volumes with 323 follicles. 
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1. INTRODUCTION 

 

Figure 1. (a-c) Multi-planar views of 3D TV-US image of the ovary; and (d) 3D rendering of the follicles in inversion mode. 

In the female reproductive system, follicles are the sites of synthesis of the oocyte and are present in the ovary. The 

quality of oocyte is directly proportional to the size of the follicle at the time of ovulation. Higher the quality of oocytes, 

better are the prospects of a successful pregnancy. About 9-12 follicles are synthesized in the ovary in a single menstrual 

cycle. Only one grows enough to house the oocyte that is released in the middle of the monthly cycle. Arrested growth of 

the follicles indicates abnormalities such as the Poly Cystic Ovarian Syndrome [1].  

In female infertility, where the follicles cease to grow, In-Vitro Fertilization (IVF) is one of the options for infertility 

treatment. In IVF treatment, the follicles are stimulated by external administration of hormones. The goal of IVF is to 

have as many follicles to grow as large as possible. As a rule of thumb, all the follicles that attain a size greater than 

15mm are aspirated at the end of the IVF cycle. A typical IVF cycle lasts anywhere from 11 to 16 days with the follicle 

growth hormones administered periodically during the cycle. One of the key factors in determining the dosage of 

hormones is the count and the size of the follicles. The sizes of follicles are quantified using the following parameters: 

diameter of the relaxed sphere (dV), length of major axis, length of minor axis, average length and follicle volume [2]. 

The modality of choice for follicle quantification is 3D Transvaginal Ultrasonography (3D TV-US). Figure 1 shows 

three cut planes (called the multi-planar views) of a 3D TV-US volume of the ovary and its corresponding 3D rendered 

image. It can be observed from the figure that follicles appear as hypo-echoic structures with a thin layer of hyper echoic 

ovarian stroma separating each follicle. The ovarian boundary itself appears as a hyper-echo around the follicles. 
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Traditionally, follicle quantification is done manually, where the examining sonographer identifies the plane in 3D 

volume where the follicle visually has the maximum diameter and measures its size with the help of calipers on the 

ultrasound machine. Manual quantification of follicle size and count is subject to large inter-observer variations and is 

time consuming [3]. There have been attempts in the past to automate the process and solve the problems associated with 

the manual quantification of follicles. The algorithms proposed in literature [4,5], for automated follicle quantification 

are: (a) sensitive to noise; (b) dependent on the image acquisition settings; (c) limited by low detection rates (50% in [4] 

and 80% in [5]); and (d) dependent on proper region of interest (ROI) selection. We propose a novel algorithm to detect 

and segment follicles that addresses the limitations of the existing approaches for accurate follicle quantification.  

2. METHODS 

A three stage pipeline comprising of detection, segmentation and a post-processing is employed to quantify the follicles 

as shown in Figure 2.  

 

Figure 2. Flow Diagram of the algorithm. 

2.1 Detection 

In order to obtain accurate quantifications, the follicle detection has to be robust to speckle noise and imaging artefacts. 

The ovarian stroma in between the follicles appears to be diffuse in the presence of shadow artefacts. In order to detect 

follicles in the presence of noise and diffuse boundaries, we employ features derived from local phase. Local phase 

provides information regarding the state of the signal at any given instant in time and is invariant to signal energy. The 

use of local phase to perform tissue characterization based on echogenicity has been successfully demonstrated in [6,7]. 
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The Phase Symmetry (PS) map derived from local phase is a useful feature to detect salient hypo-echoic enclosed 

structures in ultrasound images [8]. 

The PS at a voxel is defined as: 

   𝑃𝑆 =  
∑ ⌊[|𝑒𝑠|−|𝑜𝑠|]−𝑇⌋𝑠

∑ √(𝑒𝑠
2+𝑜𝑠

2)+𝜖𝑠

                                                   (1) 

 

𝑜𝑠 = √(𝑒𝑠 ∗ ℎ1 )2 + (𝑒𝑠 ∗ ℎ2)2 + (𝑒𝑠 ∗ ℎ3)2 
 
                                              (2) 

 
where, s is the scale factor, T is the noise tolerance constant, 𝑒𝑠 is the 3D ultrasound image bandpass filtered with a log 

Gabor filter and 𝑜𝑠 is obtained as in Eq.(2). Here, ℎ1, ℎ2 and ℎ3 are the antisymmetric filters used to obtain the Riesz 

transform of the bandlimited signal 𝑒𝑠 [9]. 

A distinct PS peak is not observed inside the follicles due the homogeneity in echogenicity of the follicles. To obtain a 

distinct peak, the PS map is enhanced by binary thresholding and smoothening. Figure 3 shows the PS map before and 

after enhancement. It can be seen from the figure that, enhancing the PS map also suppresses the contributions from the 

non-follicular region to the detection process. This ensures that the number of false positive detections remains low at the 

end of the detection stage. 

 

Figure 3. Enhancing PS map. (a) Input image; (b) PS map; and (c) PS map after enhancement. 

Having obtained the PS maps, the follicle centers are detected by employing a modified version of the mean-shift 

algorithm of [10]. Here, the PS map is used as the likelihood function instead of voxel intensities in the mean shift 

update equation given by Eq. (3). 

𝑥𝑘+1 =  
∑ 𝑥𝑘𝑃𝑆𝑖𝑖∈𝑁(𝑥𝑘)

∑ 𝑃𝑆𝑖𝑖∈𝑁(𝑥𝑘)
                                                                          (3) 

where, 𝑃𝑆𝑖  is the PS value at i in the neighborhood N of the data point 𝑥 under consideration.  Mean shift algorithm helps 

in: (a) determining multiple detections of same follicle; (b) splitting merged follicles in the post processing stage of the 

algorithm. Random seed points are initialized in the 3D ultrasound image and the mean shift update of Eq. (3) is 

enforced on all the points until convergence (𝑥𝑘+1 =  𝑥𝑘). The points of convergence are chosen as follicle centers for 

segmentation initialization. Figure 4 illustrates the follicle detection process using modified mean shift. 

2.2. Segmentation 

Post detection of follicle centers, the segmentation is obtained by applying a max-flow algorithm [11]. The follicle center 

detections are given as initialization seed points for the segmentation algorithm. The flow graph is constructed by 

connecting the detected follicle center voxels to flow source and a bounding box around the detection to flow sink. Each 

of the voxels within the bounding box is connected to the graph via a 26 voxel neighborhood. The edge weight between 

neighboring voxels 𝑎, 𝑏 is assigned as in Eq. (4) where 𝐼𝑎 and 𝐼𝑏  are the intensity values of the corresponding voxels and 

𝜎 is a constant. 
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𝑒𝑑𝑔𝑒𝑤𝑒𝑖𝑔ℎ𝑡(𝑎, 𝑏) = 𝑒
−(𝐼𝑎−𝐼𝑏)

2

2𝜎2                                                                (4) 

Figure 5b shows the results of applying max-flow segmentation algorithm using the follicle centers as initialization 

points. The segmented output is labeled by connected components as shown in Figure 5c. 

 

Figure 4. Illustration of mean shift based follicle detection. 

 

Figure 5. (a) Input image; (b) max-flow segmentation output; (c) segmentation labelled by connected components. 

2.3 Post-processing 

It can be seen from Figure 6a, that the segmentation algorithm merges some follicles that have diffuse boundaries. The 

follicles merged by segmentation are detected by checking for the presence of multiple follicle centers (obtained from 

the detection stage) within a single segmentation label. In order to split the merged follicles, Gray Weighted Distance 

Transform [12] is computed using a binary mask of merged follicles and a statistical threshold is applied to split the 

merged follicles as shown in Figure 6b and 6c. Figure 6d shows the results after splitting the follicles merged in Figure 

6a. The surface mesh of the segmented follicles is extracted for quantification and visualization. Figure 7 shows the 

segmentation results with 3D mesh rendering of the follicles. 
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Figure 6. (a) Segmentation with merged follicles (in red); (b) GWDT image; (c) GWDT mask obtained after applying statistical 

threshold; (d) Merged follicles split and relabeled after post-processing.  

3. RESULTS AND DISCUSSION 

Experiments were conducted on a dataset comprising of 26 3D TV-US volumes. The datasets were obtained with 

consent from Krishna IVF clinic, Vishakhapatnam, India in accordance with the guidelines established by the 

Institutional Review Board at Krishna IVF. The algorithm was implemented in C++ on an Intel Core i7 processor with 

8GB RAM.  

Manual segmentations obtained from experts are considered as ground truth (GT) to evaluate the performance of our 

algorithm. The manual segmentations were collected using ITK-SNAP [13]. Detection is considered to be True Positive 

(TP) if there is an overlap with the GT. Detection with no overlap with GT is considered to be False Positive (FP) and 

GT follicles that are not detected are considered to be False Negative (FN). We have obtained a detection true positive 

rate (𝑇𝑃/(𝑇𝑃+𝐹𝑁)) of >90% for 323 follicles greater than 4mm in diameter (Table 1). Table 2 shows the comparison of 

our algorithm with existing state of the art methods.  

The segmentation accuracy is determined by the Dice coefficient (DSC) given by (𝒮 ∩ 𝒢)/(𝒮 ∪ 𝒢) where 𝒮 is the set of 

all pixels belonging to the segmented follicle and 𝒢 is the set of all pixels belonging to the GT follicle.

 

4. CONCLUSION AND FUTURE WORK 

We have presented a novel algorithm that can perform follicle quantification by efficiently tracking follicle centers for 

detection and segmentation. Further, the clinical significance of the algorithm is demonstrated in our longitudinal studies 

of follicular growth [14]. Detecting the antral follicles (<4mm) and improving the segmentation accuracy are some of the 

next steps of this research work. 

Table 1: Performance evaluation results 

 Detection Rates in #Follicles 

Follicle 

Diameter 
4mm-12mm >12mm 

GT 240 83 

True Detections 212 80 

% Detection 90.4 96.4 

% DSC 70.0 78.6 

 

Table 2: Comparison with state-of-the-art* 

Algorithm Detection Rate 

Jörgner et al., [4] 51.9 % 

Chen T et al., [5]  80.3 % 

Our approach 90.4 % 

 
* The results are as reported in the respective literature. 
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Figure 7. Detection & Segmentation results with 3D rendering of follicles. 
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